Introduction to Game Theory
 Lecture Note 2: Strategic-Form Games and Nash Equilibrium (2)

Haifeng Huang

University of California, Merced

Spring 2020

- In simple games we can examine each action profile in turn to see if it is a Nash equilibrium. In more complicated games it is better to use "best response functions."
- Example:

\[

\]

- What are player 1's best response(s) when player 2 chooses L, M , or R ?
- Notation: $B_{i}\left(a_{-i}\right)=\left\{a_{i}\right.$ in $A_{i}: U_{i}\left(a_{i}, a_{-i}\right) \geq U_{i}\left(a_{i}^{\prime}, a_{-i}\right)$ for all a_{i}^{\prime} in $\left.A_{i}\right\}$.
- I.e., any action in $B_{i}\left(a_{-i}\right)$ is at least as good for player i as every other action of player i when the other players' actions are given by a_{-i}.
- Example:

	Player 2			
	L		M	R
Player 1	T	1,1	1,0	0,1
	B	1,0	0,1	1,0

- $B_{1}(L)=\{T, B\}, B_{1}(M)=\{T\}, B_{1}(R)=\{B\}$

Using best response functions to define Nash equilibrium

- Definition: the action/strategy profile a^{*} is a Nash equilibrium of a strategic game if and only if every player's action is a best response to the other players' actions: a_{i}^{*} is in $B_{i}\left(a_{-i}^{*}\right)$ for every player i.
- If each player has a single best response to each list a_{-i} of the other players' actions, then $a_{i}=b_{i}\left(a_{-i}^{*}\right)$ for every i.

Using best response functions to find Nash equilibrium

- Method:
\triangleright find the best response function of each player
\triangleright find the action profile in which each player's action is a best response to the other player's action
- Example:

- Osborne (2004) exercise 39.1: Two people are involved in a synergistic relationship. If both devote more effort to the relationship, they are both better off. For any given effort of individual j, the return to individual i 's effort first increases, then decreases. Specifically, an effort level is a non-negative number, and each individual i 's preferences are represented by the payoff function $u_{i}=e_{i}\left(c+e_{j}-e_{i}\right)$, where e_{i} is i 's effort level, e_{j} is the other individual's effort level, and $c>0$ is a constant.
- $u_{i}=-e_{i}^{2}+\left(c+e_{j}\right) e_{i}$, a quadratic function; inverted U-shape
- $u_{i}=0$ if $e_{i}=0$ or if $e_{i}=c+e_{j}$, so anything in between will give ia positive payoff
- Symmetry of quadratic functions means that $b_{i}\left(e_{j}\right)=\frac{1}{2}\left(c+e_{j}\right)$
- Similarly, $b_{j}\left(e_{i}\right)=\frac{1}{2}\left(c+e_{i}\right)$
- In equilibrium, therefore, $e_{i}=\frac{1}{2}\left(c+e_{j}\right)$ and $e_{j}=\frac{1}{2}\left(c+e_{i}\right)$; solving the two equations together yield that $e_{i}^{*}=e_{j}^{*}=c$.

Alternatively, we can use (just) a little calculus

- Maximize $u_{i}=e_{i}\left(c+e_{j}-e_{i}\right)$
- First order condition: $\frac{\partial u_{i}}{\partial e_{i}}=c+e_{j}-2 e_{i}=0 \Rightarrow$

$$
\begin{equation*}
e_{i}=\frac{c+e_{j}}{2} \tag{1}
\end{equation*}
$$

- Similarly,

$$
\begin{equation*}
e_{j}=\frac{c+e_{i}}{2} \tag{2}
\end{equation*}
$$

- Plugging (2) into (1), we know $e_{i}^{*}=e_{j}^{*}=c$.
- Osborne (2004) exercise 42.2(b): Two people are engaged in a joint project. If each person i puts in effort x_{i}, a non-negative number equal to at most 1 , which costs her x_{i}, each person will get a utility $4 x_{1} x_{2}$. Find the NE of the game. Is there a pair of effort levels that yields higher payoffs for both players than do the NE effort levels?

Oligopolistic competition: the Cournot model

- Two firms produce the same product. The unit cost of production is c. Let q_{i} be firm i's output, $Q=\sum_{i=1}^{2} q_{i}$, then the market price P is $P(Q)=\alpha-Q$, where α is a constant.
- Firms choose their output simultaneously. What is the NE?
- Each firm wants to maximize profit. Firm 1's profit is

$$
\begin{aligned}
\pi_{1} & =P(Q) q_{1}-c q_{1} \\
& =\left(\alpha-q_{1}-q_{2}\right) q_{1}-c q_{1}
\end{aligned}
$$

- Differentiate π_{1} with respect to q_{1}, we know by the first order condition that firm 1's optimal output (best response) is

$$
\begin{equation*}
q_{1}=b_{1}\left(q_{2}\right)=\frac{\alpha-q_{2}-c}{2} \tag{3}
\end{equation*}
$$

- Similarly (since the game is symmetric), firm 2's optimal output is

$$
\begin{equation*}
q_{2}=b_{2}\left(q_{1}\right)=\frac{\alpha-q_{1}-c}{2} \tag{4}
\end{equation*}
$$

- Solving equations (3) and (4) together, we have

$$
q_{1}^{*}=q_{2}^{*}=\frac{1}{3}(\alpha-c)
$$

- If the two firms can collude, they would maximize $P Q-c Q=(\alpha-Q) Q-c Q$. The output would be $Q=\frac{1}{2}(\alpha-c)<\frac{2}{3}(\alpha-c)$, and the market price would be $\alpha-Q=\alpha-\frac{1}{2}(\alpha-c)>\alpha-\frac{2}{3}(\alpha-c)$.
- Competition (instead of collusion) increases total output, and reduces market price.

The strategic model of the war of attrition

- Examples: animals fighting over prey; interest groups lobbying against each other; countries fighting each other to see who will give up first...
- Model setup
\triangleright Two players, i and j, vying for an object, which is respectively worth v_{i} and v_{j} to the two players; a 50% chance of obtaining the object is respectivley worth $\frac{v_{i}}{2}$ and $\frac{v_{j}}{2}$.
\triangleright Time starts at 0 and runs indefinitely; each unit of time that passes before one of the parties concedes costs each player one unit of utility.
\triangleright So, a player i's utility is

$$
u_{i}\left(t_{i}, t_{j}\right)= \begin{cases}-t_{i}, & \text { if } t_{i}<t_{j} ; \\ \frac{1}{2} v_{i}-t_{j}, & \text { if } t_{i}=t_{j} ; \\ v_{i}-t_{j}, & \text { if } t_{i}>t_{j} .\end{cases}
$$

Best response function

- Player 2's best response function is (orange)

$$
B_{2}\left(t_{1}\right)= \begin{cases}\left\{t_{2}: t_{2}>t_{1}\right\}, & \text { if } t_{1}<v_{2} \\ \left\{t_{2}: t_{2}=0 \text { or } t_{2}>t_{1}\right\}, & \text { if } t_{1}=v_{2} \\ \{0\}, & \text { if } t_{1}>v_{2}\end{cases}
$$

- $\left(t_{1}, t_{2}\right)$ is a NE iff $t_{1}=0$ and $t_{2} \geq v_{1}$, or $t_{2}=0$ and $t_{1} \geq v_{2}$.
- In equilibrium, either player may concede first, including the one who values the object more.
- The equilibria are asymmetric, even when $v_{1}=v_{2}$ (i.e., when the game is symmetric).
- A game is symmetric if $u_{1}\left(a_{1}, a_{2}\right)=u_{2}\left(a_{2}, a_{1}\right)$ for every action pair $\left(a_{1}, a_{2}\right)$ (if you and your opponent exchange actions, you also exchange your payoffs).

A direct argument

- If $t_{i}=t_{j}$, then either player can increase her payoff by conceding slightly later and obtaining the object for sure; $v_{i}-t_{i}-\epsilon>\frac{1}{2} v_{i}-t_{i}$ for a sufficiently small ϵ.
- If $0<t_{i}<t_{j}$, player i should rather choose $t_{i}=0$ to reduce the loss.
- If $0=t_{i}<t_{j}<v_{i}$, player i can increase her payoff by conceding slightly after t_{j}, but before $t_{i}=v_{i}$.
- The remaining case is $t_{i}=0$ and $t_{j} \geq v_{i}$, which we can easily verify as a NE.
- Player i^{\prime} s action a_{i}^{\prime} strictly dominates action $a_{i}^{\prime \prime}$ if

$$
u_{i}\left(a_{i}^{\prime}, a_{-i}\right)>u_{i}\left(a_{i}^{\prime \prime}, a_{-i}\right)
$$

for every list a_{-i} of the other players' actions. In this case the action $a_{i}^{\prime \prime}$ is strictly dominated.

- In Prisoner's Dilemma, "confess" strictly dominates "silent". Suspect 2

		Silent	
Confess			
Suspect 1	Silent	0,0	$-2,1$
	Confess	$1,-2$	$-1,-1$

- If player i's action a_{i}^{\prime} strictly dominates every other action of hers, then a_{i}^{\prime} is i 's strictly dominant action.

Elimination of strictly dominated action

- Not every game has a strictly dominated action. But if there is, it is not used in any Nash equilibrium and so can be eliminated.
- Any strictly dominated action in the following game? Any strictly dominant action?

\[

\]

Elimination of strictly dominated action

- Not every game has a strictly dominated action. But if there is, it is not used in any Nash equilibrium and so can be eliminated.
- Any strictly dominated action in the following game? Any strictly dominant action?
$\Rightarrow \mathrm{D}$ is strictly dominated by M
- Sometimes we can repeat the procedure: eliminate all strictly dominated actions, and then continue to eliminate strategies that are now dominated in the simpler game.
- Are there more than one actions that can be eliminated from the following game?

	L		C		R	
T	2	0	1	1	4	2
M	3	4	1	2	2	3
B	1	3		2	3	0

- Sometimes we can repeat the procedure: eliminate all strictly dominated actions, and then continue to eliminate strategies that are now dominated in the simpler game.
- Are there more than one actions that can be eliminated from the following game?

\Rightarrow First B and then C can be eliminated
- Player i's action a_{i}^{\prime} weakly dominates action $a_{i}^{\prime \prime}$ if

$$
u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \geq u_{i}\left(a_{i}^{\prime \prime}, a_{-i}\right)
$$

for every list a_{-i} of the other players' actions, and

$$
u_{i}\left(a_{i}^{\prime}, a_{-i}\right)>u_{i}\left(a_{i}^{\prime \prime}, a_{-i}\right)
$$

for some list a_{-i} of the other players' actions.

- Action $a_{i}^{\prime \prime}$ is then weakly dominated.

Weak Domination

- Any weakly dominated action in the following game?

Weak Domination

- Any weakly dominated action in the following game?

$\Rightarrow R$ weakly dominated by C; D weakly dominated by M

Weak Domination

- Any weakly dominated action in the following game?

$\Rightarrow \mathrm{R}$ weakly dominated by C ; D weakly dominated by M
- If player i's action a_{i}^{\prime} weakly dominates every other action of hers, then a_{i}^{\prime} is $i^{\prime} s$ weakly dominant action.

Example: Voting

There are two candidates A and B for an office, and N voters, $N \geq 3$ and odd. A majority of voters prefer A to win.

- Is there a strictly dominated action? A weakly dominated action?
- What are the Nash equilibria of the game? Hint: Let N_{A} denote the number of voters that vote for A, and N_{B} the number of voters that vote for $\mathrm{B}, N_{A}+N_{B}=N$, then
\triangleright What if $N_{A}=N_{B}+1$ or $N_{B}=N_{A}+1$, and some citizens who vote for the winner actually prefer the loser?
\triangleright What if $N_{A}=N_{B}+1$ or $N_{B}=N_{A}+1$, and nobody who votes for the winner actually prefers the loser?
\triangleright Can it happen that $N_{A}=N_{B}+2$ or $N_{B}=N_{A}+2$?
\triangleright What if $N_{A} \geq N_{B}+3$ or $N_{B} \geq N_{A}+3$?

Solving the voting problem

- What if $N_{A}=N_{B}+1$ or $N_{B}=N_{A}+1$, and some citizens who vote for the winner actually prefer the loser? \Rightarrow Such a citizen can unilaterally deviate and make her favorite candidate win. Not a NE.
- What if $N_{A}=N_{B}+1$ or $N_{B}=N_{A}+1$, and nobody who votes for the winner actually prefers the loser? \Rightarrow The former is a NE, but the latter cannot occur (the supporters of B would be more than half).
- Can it be happen that $N_{A}=N_{B}+2$ or $N_{B}=N_{A}+2$? \Rightarrow No, because N is odd.
- What if $N_{A} \geq N_{B}+3$ or $N_{B} \geq N_{A}+3$? \Rightarrow Yes, NE.

Strategic voting

- There are three candidates, A, B, and C , and no voter is indifferent between any two of them.
- Voting for one's least preferred candidate is a weakly dominated action. What about voting for one's second preference? Not dominated.
- There are three candidates, A, B, and C, and no voter is indifferent between any two of them.
- Voting for one's least preferred candidate is a weakly dominated action. What about voting for one's second preference? Not dominated.
- Suppose you prefer A to B to C, and the other citizens' votes are tied between B and C, with A being a distant third. Then voting for B, your second preference, is your best choice! \Rightarrow strategic voting
- In two-candidate elections you are weakly better off by voting for your favorite candidate, but in three-candidate elections that is not necessarily the case. E.g, Nader supporters in the 2000 US election.

Hotelling/Downsian model

- A workhorse model of electoral competition. First proposed by Hotelling (1929) and popularized by Downs (1957).
- Setup:
\triangleright Parties/candidates compete by choosing a policy on the line segment $[0,1]$. The party with most votes wins; if there is a tie, the parties that tie have the same probability of winning.
\triangleright Parties only care about winning, and will commit to the platforms they have chosen.
\triangleright Each voter has a favorite policy on $[0,1]$; her utility decreases as the winner's position is further away from her favorite policy \Rightarrow single-peaked preference
\triangleright Each voter will vote sincerely, choosing the party whose position is closest to her favorite policy.
\triangleright There is a median voter position, m.

Two parties

- Suppose there are 2 parties, L and R. What is the Nash equilibrium for the parties' positions?

Two parties

- Suppose there are 2 parties, L and R. What is the Nash equilibrium for the parties' positions?
- The unique equilibrium is both parties choose position m.
$\triangleright(m, m)$ is clearly a NE
\triangleright any other action profile is not a NE
- This is the Median Voter Theorem.

Three parties

- Suppose there is a continuum of voters, with favorite policies uniformly distributed on $[0,1]$, and the number of parties is 3 ($\mathrm{L}, \mathrm{C}, \mathrm{R}$). Do we still have the equilibrium that all parties choose m ?
- Suppose there is a continuum of voters, with favorite policies uniformly distributed on $[0,1]$, and the number of parties is 3 (L, C, R). Do we still have the equilibrium that all parties choose m ?
\Rightarrow No. One of the parties can move slightly to the left or the right of the median voter position, and win the election.

Three parties

- Suppose there is a continuum of voters, with favorite policies uniformly distributed on $[0,1]$, and the number of parties is 3 (L, C, R). Do we still have the equilibrium that all parties choose m ?
\Rightarrow No. One of the parties can move slightly to the left or the right of the median voter position, and win the election.
- Would the three parties positioning at $0.45,0.55,0.6$ be a NE?

Three parties

- Suppose there is a continuum of voters, with favorite policies uniformly distributed on $[0,1]$, and the number of parties is 3 (L, C, R). Do we still have the equilibrium that all parties choose m ?
\Rightarrow No. One of the parties can move slightly to the left or the right of the median voter position, and win the election.
- Would the three parties positioning at $0.45,0.55,0.6$ be a NE?
\Rightarrow Yes. L wins already; C and R cannot win by moving anywhere.

Condorcet winner

- A Condorcet winner in an election is a position, x^{*}, such that for every other position y that is different from x^{*}, a majority of voters prefer x^{*} to y.
- The median voter position is a Condorcet winner.
- Not all election games have a Condorcet winner.
\triangleright Condorcet paradox: A prefers X to Y to Z ; B prefers Y to Z to X ; C prefers Z to X to Y .
- Even if there is a Condorcet winner, it only has guaranteed victory in pairwise comparisons, not necessarily when there are three or more policy alternatives.
\triangleright E.g., uniform distribution of voter preferences, sincere voting, candidate $\mathrm{A}=.3, \mathrm{~B}=.6, \mathrm{C}=.7$

