Best Response Functions	Cournot Oligopoly 00	War of Attrition	Domination 00000000	Downsian Electoral Competition

Introduction to Game Theory Lecture Note 2: Strategic-Form Games and Nash Equilibrium (2)

Haifeng Huang

University of California, Merced

Spring 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- In simple games we can examine each action profile in turn to see if it is a Nash equilibrium. In more complicated games it is better to use "best response functions."
- Example:

Player 2
L M R
Player 1 T
$$1, 1 1, 0 0, 1$$

B $1, 0 0, 1 1, 0$

 What are player 1's best response(s) when player 2 chooses L, M, or R?

Best Response Functions 00000000	Cournot Oligopoly 00	War of Attrition	Domination 00000000	Downsian Electoral Competition
Best response functions: definition				

Notation:

 $B_i(a_{-i}) = \{a_i \text{ in } A_i : U_i(a_i, a_{-i}) \ge U_i(a_i', a_{-i}) \text{ for all } a_i' \text{ in } A_i\}.$

 I.e., any action in B_i(a_{-i}) is at least as good for player i as every other action of player i when the other players' actions are given by a_{-i}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Example:

Player 2
L M R
Player 1 T
$$\begin{bmatrix} 1, 1 & 1, 0 & 0, 1 \\ B & 1, 0 & 0, 1 & 1, 0 \end{bmatrix}$$

Player 1 $B = \{T, B\}, B_1(M) = \{T\}, B_1(R) = \{B\}$

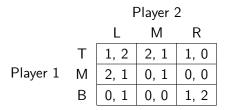
Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition
Using best response	se functions to c	lefine Nash equ	uilibrium	

- Definition: the action/strategy profile a^* is a Nash equilibrium of a strategic game if and only if every player's action is a best response to the other players' actions: a_i^* is in $B_i(a_{-i}^*)$ for every player *i*.
- If each player has a single best response to each list a_{-i} of the other players' actions, then $a_i = b_i(a_{-i}^*)$ for every *i*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition
Using best respons	e functions to f	ind Nash equili	ibrium	

- Method:
 - ▷ find the best response function of each player
 - ▷ find the action profile in which each player's action is a best response to the other player's action
- Example:



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Best Response Functions	Cournot Oligopoly 00	War of Attrition	Domination 00000000	Downsian Electoral Competition
One more example				

• Osborne (2004) exercise 39.1: Two people are involved in a synergistic relationship. If both devote more effort to the relationship, they are both better off. For any given effort of individual *j*, the return to individual *i*'s effort first increases, then decreases. Specifically, an effort level is a non-negative number, and each individual *i*'s preferences are represented by the payoff function $u_i = e_i(c + e_j - e_i)$, where e_i is *i*'s effort level, e_j is the other individual's effort level, and c > 0 is a constant.

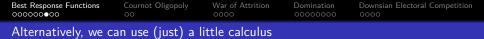
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition
Solving the exampl	e			

- $u_i = -e_i^2 + (c + e_j)e_i$, a quadratic function; inverted U-shape
- $u_i = 0$ if $e_i = 0$ or if $e_i = c + e_j$, so anything in between will give *i* a positive payoff
- Symmetry of quadratic functions means that $b_i(e_j) = \frac{1}{2}(c+e_j)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Similarly, $b_j(e_i) = \frac{1}{2}(c+e_i)$
- In equilibrium, therefore, $e_i = \frac{1}{2}(c + e_j)$ and $e_j = \frac{1}{2}(c + e_i)$; solving the two equations together yield that $e_i^* = e_i^* = c$.



• Maximize
$$u_i = e_i(c + e_j - e_i)$$

• First order condition: $\frac{\partial u_i}{\partial e_i} = c + e_j - 2e_i = 0 \Rightarrow$

$$e_i = \frac{c + e_j}{2} \tag{1}$$

• Similarly,

$$e_j = \frac{c + e_j}{2} \tag{2}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

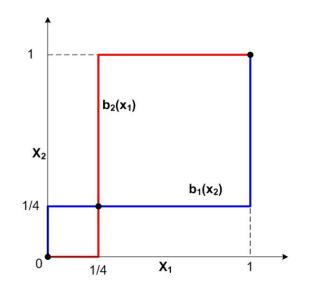
• Plugging (2) into (1), we know $e_i^* = e_j^* = c$.

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition
Another example a	about cooperation	on		

Osborne (2004) exercise 42.2(b): Two people are engaged in a joint project. If each person *i* puts in effort *x_i*, a non-negative number equal to at most 1, which costs her *x_i*, each person will get a utility 4*x*₁*x*₂. Find the NE of the game. Is there a pair of effort levels that yields higher payoffs for both players than do the NE effort levels?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition
Best response func	tions in graph			



・ロマ・山マ・山田・山田・山

- Two firms produce the same product. The unit cost of production is *c*. Let *q_i* be firm *i*'s output, *Q* = ∑_{*i*=1}² *q_i*, then the market price *P* is *P*(*Q*) = α − *Q*, where α is a constant.
- Firms choose their output simultaneously. What is the NE?
- Each firm wants to maximize profit. Firm 1's profit is

$$\pi_1 = P(Q)q_1 - cq_1 = (\alpha - q_1 - q_2)q_1 - cq_1$$

 Differentiate π₁ with respect to q₁, we know by the first order condition that firm 1's optimal output (best response) is

$$q_1 = b_1(q_2) = \frac{\alpha - q_2 - c}{2}$$
 (3)

• Similarly (since the game is symmetric), firm 2's optimal output is

$$q_2 = b_2(q_1) = \frac{\alpha - q_1 - c}{2}$$
 (4)

• Solving equations (3) and (4) together, we have

$$q_1^* = q_2^* = \frac{1}{3}(\alpha - c).$$

- If the two firms can collude, they would maximize $PQ cQ = (\alpha Q)Q cQ$. The output would be $Q = \frac{1}{2}(\alpha c) < \frac{2}{3}(\alpha c)$, and the market price would be $\alpha Q = \alpha \frac{1}{2}(\alpha c) > \alpha \frac{2}{3}(\alpha c)$.
- Competition (instead of collusion) increases total output, and reduces market price.

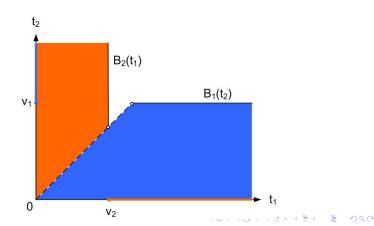
Best Response Functions	Cournot Oligopoly	War of Attrition ●000	Domination 00000000	Downsian Electoral Competition
The strategic mod	el of the war of	attrition		

- Examples: animals fighting over prey; interest groups lobbying against each other; countries fighting each other to see who will give up first...
- Model setup
 - ▷ Two players, *i* and *j*, vying for an object, which is respectively worth v_i and v_j to the two players; a 50% chance of obtaining the object is respectivley worth $\frac{v_i}{2}$ and $\frac{v_j}{2}$.
 - Time starts at 0 and runs indefinitely; each unit of time that passes before one of the parties concedes costs each player one unit of utility.
 - ▷ So, a player *i*'s utility is

$$u_i(t_i, t_j) = \begin{cases} -t_i, & \text{if } t_i < t_j; \\ \frac{1}{2}v_i - t_j, & \text{if } t_i = t_j; \\ v_i - t_j, & \text{if } t_i > t_j. \end{cases}$$

• Player 2's best response function is (orange)

$$B_2(t_1) = \begin{cases} \{t_2 : t_2 > t_1\}, & \text{if } t_1 < v_2; \\ \{t_2 : t_2 = 0 \text{ or } t_2 > t_1\}, & \text{if } t_1 = v_2; \\ \{0\}, & \text{if } t_1 > v_2. \end{cases}$$



Best Response Functions	Cournot Oligopoly	War of Attrition 00●0	Domination 00000000	Downsian Electoral Competition
NE in war of attrit	ion			

- (t_1, t_2) is a NE iff $t_1 = 0$ and $t_2 \ge v_1$, or $t_2 = 0$ and $t_1 \ge v_2$.
- In equilibrium, either player may concede first, including the one who values the object more.
- The equilibria are asymmetric, even when $v_1 = v_2$ (i.e., when the game is symmetric).
- A game is symmetric if $u_1(a_1, a_2) = u_2(a_2, a_1)$ for every action pair (a_1, a_2) (if you and your opponent exchange actions, you also exchange your payoffs).

Best Response Functions	Cournot Oligopoly	War of Attrition 000●	Domination 00000000	Downsian Electoral Competition
A direct argument				

- If t_i = t_j, then either player can increase her payoff by conceding slightly later and obtaining the object for sure;
 v_i − t_i − ε > ¹/₂v_i − t_i for a sufficiently small ε.
- If $0 < t_i < t_j$, player *i* should rather choose $t_i = 0$ to reduce the loss.
- If 0 = t_i < t_j < v_i, player *i* can increase her payoff by conceding slightly after t_j, but before t_i = v_i.
- The remaining case is t_i = 0 and t_j ≥ v_i, which we can easily verify as a NE.

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination •0000000	Downsian Electoral Competition
Domination				

• Player *i*'s action a'_i strictly dominates action a''_i if

$$u_i(a_i^{'}, a_{-i}) > u_i(a_i^{''}, a_{-i})$$

for every list a_{-i} of the other players' actions. In this case the action a_i'' is **strictly dominated**.

• In Prisoner's Dilemma, "confess" strictly dominates "silent".

$$\begin{array}{c|c} Suspect \ 2\\ Silent & Confess\\ Suspect \ 1 & Silent & 0, \ 0 & -2, \ 1\\ Confess & 1, \ -2 & -1, \ -1 \end{array}$$

• If player *i*'s action a'_i strictly dominates every other action of hers, then a'_i is *i*'s **strictly dominant action**.

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination ○●○○○○○○	Downsian Electoral Competition
Elimination of stric	ctly dominated a	action		

- Not every game has a strictly dominated action. But if there is, it is not used in any Nash equilibrium and so can be eliminated.
- Any strictly dominated action in the following game? Any strictly dominant action?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 0●000000	Downsian Electoral Competition
Elimination of strie	ctly dominated a	action		

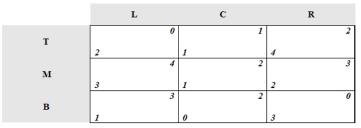
- Not every game has a strictly dominated action. But if there is, it is not used in any Nash equilibrium and so can be eliminated.
- Any strictly dominated action in the following game? Any strictly dominant action?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\Rightarrow~$ D is strictly dominated by M

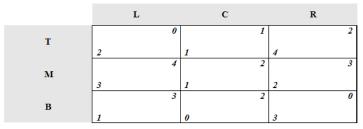
Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00€00000	Downsian Electoral Competition
Iterated elimination	n of strictly dom	ninated action		

- Sometimes we can repeat the procedure: eliminate all strictly dominated actions, and then continue to eliminate strategies that are now dominated in the simpler game.
- Are there more than one actions that can be eliminated from the following game?



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

- Sometimes we can repeat the procedure: eliminate all strictly dominated actions, and then continue to eliminate strategies that are now dominated in the simpler game.
- Are there more than one actions that can be eliminated from the following game?



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

⇒ First B and then C can be eliminated

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 000€0000	Downsian Electoral Competition
Weak Domination				

• Player *i*'s action a'_i weakly dominates action a''_i if

$$u_i(a'_i, a_{-i}) \ge u_i(a''_i, a_{-i})$$

for every list a_{-i} of the other players' actions, and

$$u_i(a'_i, a_{-i}) > u_i(a''_i, a_{-i})$$

for some list a_{-i} of the other players' actions.

• Action a_i'' is then weakly dominated.

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 0000●000	Downsian Electoral Competition
Weak Domination				

• Any weakly dominated action in the following game?

		Player 2			
		L	С	R	
	U	7, 3	0, 4	4, 4	
Player 1	М	4, 6	1, 5	5, 3	
	D	3, 8	1, 2	4, 0	

(ロ)、(型)、(E)、(E)、 E) の(()

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 0000●000	Downsian Electoral Competition
Weak Domination				

• Any weakly dominated action in the following game?

		Player 2			
		L	С	R	
	U	7, 3	0, 4	4, 4	
Player 1	Μ	4, 6	1, 5	5, 3	
	D	3, 8	1, 2	4, 0	

(ロ)、(型)、(E)、(E)、 E) の(()

 $\Rightarrow~$ R weakly dominated by C; D weakly dominated by M

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 0000●000	Downsian Electoral Competition
Weak Domination				

Any weakly dominated action in the following game?

		Player 2			
		L	С	R	
	U	7, 3	0, 4	4, 4	
Player 1	М	4, 6	1, 5	5, 3	
	D	3, 8	1, 2	4, 0	

 $\Rightarrow\,$ R weakly dominated by C; D weakly dominated by M

 If player *i*'s action a'_i weakly dominates every other action of hers, then a'_i is *i*'s weakly dominant action.

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000€00	Downsian Electoral Competition
Example: Voting				

There are two candidates A and B for an office, and N voters, $N \ge 3$ and odd. A majority of voters prefer A to win.

- Is there a strictly dominated action? A weakly dominated action?
- What are the Nash equilibria of the game? Hint: Let N_A denote the number of voters that vote for A, and N_B the number of voters that vote for B, $N_A + N_B = N$, then
 - ▷ What if $N_A = N_B + 1$ or $N_B = N_A + 1$, and some citizens who vote for the winner actually prefer the loser?
 - ▷ What if $N_A = N_B + 1$ or $N_B = N_A + 1$, and nobody who votes for the winner actually prefers the loser?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▷ Can it happen that $N_A = N_B + 2$ or $N_B = N_A + 2$?
- ▷ What if $N_A \ge N_B + 3$ or $N_B \ge N_A + 3$?

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 000000●0	Downsian Electoral Competition
Solving the voting	problem			

- What if N_A = N_B + 1 or N_B = N_A + 1, and some citizens who vote for the winner actually prefer the loser? ⇒ Such a citizen can unilaterally deviate and make her favorite candidate win. Not a NE.
- What if N_A = N_B + 1 or N_B = N_A + 1, and nobody who votes for the winner actually prefers the loser? ⇒ The former is a NE, but the latter cannot occur (the supporters of B would be more than half).
- Can it be happen that N_A = N_B + 2 or N_B = N_A + 2? ⇒ No, because N is odd.

(日)((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))

• What if $N_A \ge N_B + 3$ or $N_B \ge N_A + 3$? \Rightarrow Yes, NE.

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 0000000●	Downsian Electoral Competition
Strategic voting				

- There are three candidates, A, B, and C, and no voter is indifferent between any two of them.
- Voting for one's least preferred candidate is a weakly dominated action. What about voting for one's second preference? Not dominated.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 0000000●	Downsian Electoral Competition
Strategic voting				

- There are three candidates, A, B, and C, and no voter is indifferent between any two of them.
- Voting for one's least preferred candidate is a weakly dominated action. What about voting for one's second preference? Not dominated.
- Suppose you prefer A to B to C, and the other citizens' votes are tied between B and C, with A being a distant third. Then voting for B, your second preference, is your best choice! ⇒ strategic voting
- In two-candidate elections you are weakly better off by voting for your favorite candidate, but in three-candidate elections that is not necessarily the case. E.g. Nader supporters in the 2000 US election.

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition ●000
Hotelling/Downsia	n model			

- A workhorse model of electoral competition. First proposed by Hotelling (1929) and popularized by Downs (1957).
- Setup:
 - Parties/candidates compete by choosing a policy on the line segment [0, 1]. The party with most votes wins; if there is a tie, the parties that tie have the same probability of winning.
 - ▷ Parties only care about winning, and will commit to the platforms they have chosen.
 - ▷ Each voter has a favorite policy on [0, 1]; her utility decreases as the winner's position is further away from her favorite policy ⇒ single-peaked preference

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▷ Each voter will vote **sincerely**, choosing the party whose position is closest to her favorite policy.
- \triangleright There is a median voter position, *m*.

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition 0●00
Two parties				

• Suppose there are 2 parties, *L* and *R*. What is the Nash equilibrium for the parties' positions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition 0●00
Two parties				

- Suppose there are 2 parties, *L* and *R*. What is the Nash equilibrium for the parties' positions?
- The unique equilibrium is both parties choose position m.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

- ▷ (m, m) is clearly a NE
- $\,\triangleright\,$ any other action profile is not a NE
- This is the Median Voter Theorem.

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition
Three parties				

• Suppose there is a continuum of voters, with favorite policies uniformly distributed on [0, 1], and the number of parties is 3 (L, C, R). Do we still have the equilibrium that all parties choose *m*?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition
Three parties				

- Suppose there is a continuum of voters, with favorite policies uniformly distributed on [0, 1], and the number of parties is 3 (L, C, R). Do we still have the equilibrium that all parties choose *m*?
 - $\Rightarrow\,$ No. One of the parties can move slightly to the left or the right of the median voter position, and win the election.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition
Three parties				

- Suppose there is a continuum of voters, with favorite policies uniformly distributed on [0, 1], and the number of parties is 3 (L, C, R). Do we still have the equilibrium that all parties choose *m*?
 - \Rightarrow No. One of the parties can move slightly to the left or the right of the median voter position, and win the election.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 Would the three parties positioning at 0.45, 0.55, 0.6 be a NE?

Best Response Functions	Cournot Oligopoly	War of Attrition	Domination 00000000	Downsian Electoral Competition
Three parties				

- Suppose there is a continuum of voters, with favorite policies uniformly distributed on [0, 1], and the number of parties is 3 (L, C, R). Do we still have the equilibrium that all parties choose *m*?
 - \Rightarrow No. One of the parties can move slightly to the left or the right of the median voter position, and win the election.
- Would the three parties positioning at 0.45, 0.55, 0.6 be a NE?
 - \Rightarrow Yes. L wins already; C and R cannot win by moving anywhere.

Best Response Functions	Cournot Oligopoly 00	War of Attrition	Domination 00000000	Downsian Electoral Competition
Condorcet winner				

- A **Condorcet winner** in an election is a position, x^* , such that for every other position y that is different from x^* , a majority of voters prefer x^* to y.
- The median voter position is a Condorcet winner.
- Not all election games have a Condorcet winner.
 - Condorcet paradox: A prefers X to Y to Z; B prefers Y to Z to X; C prefers Z to X to Y.
- Even if there is a Condorcet winner, it only has guaranteed victory in pairwise comparisons, not necessarily when there are three or more policy alternatives.
 - $\triangleright\,$ E.g., uniform distribution of voter preferences, sincere voting, candidate A = .3, B = .6, C = .7

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00